Перевод: с английского на все языки

со всех языков на английский

distinct advantages

  • 1 distinct advantages

    Лазерная медицина: явные преимущества

    Универсальный англо-русский словарь > distinct advantages

  • 2 distinct

    1) четко / отчетливо проявляющийся
    distinct advantages явные преимущества
    2) отличный; совершенно отличный; принципиально отличный
    3) различный / различные; различающийся / различающиеся
    4) неодинаковый
    5) несовпадающий (напр., об осях)
    6) обособленный; индивидуальный
    The module is separated by two blast walls which run the full height and width of the module, creating three distinct areas Двумя перегородками на всю высоту и ширину модуль делится на три обособленные рабочие зоны
    7) определенный / определенные (в знач. явный / явные; напр., преимущества)
    8) характерный
    the latch and latch lock will automatically engage with a distinct "snap action " защелка и фиксатор защелки автоматически входят в зацепление с характерным щелчком
    9) \distinct это не то же самое, что...; здесь понимается не...
    10) as distinct from в отличие от

    English-Russian dictionary of scientific and technical difficulties vocabulary > distinct

  • 3 food irradiation

    1. облучение продуктов питания

     

    облучение продуктов питания

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    food irradiation
    The most recent addition to food preservation technologies is the use of ionizing radiation, which has some distinct advantages over conventional methods. With irradiation, foods can be treated after packaging, thus eliminating post-processing contamination. In addition, foods are preserved in a fresh state and can be kept longer without noticeable loss of quality. Food irradiation leaves no residues, and changes in nutritional value due to irradiation are comparable with those produced by other processes. Irradiation is the process of applying high energy to a material, such as food, to sterilize or extend its shelf-life by killing microorganisms, insects and other pests residing on it. Sources of ionizing radiation that have been used include gamma rays, electron beams and X-rays. Gamma rays are produced by radioactive isotopes such as Cobalt-60. Electron beams are produced by linear accelerators, which themselves are powered by electricity. The dose applied to a product is the most important factor of the process. At high doses, food is essentially sterilized, just as occurs in canning. Products so treated can be stored at room temperature almost indefinitely. Controversial and banned in some countries. (Source: IFSE / VCN)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > food irradiation

  • 4 advantage

    English-russian dctionary of contemporary Economics > advantage

  • 5 advantage

    English-russian dctionary of diplomacy > advantage

  • 6 Knowledge

       It is indeed an opinion strangely prevailing amongst men, that houses, mountains, rivers, and, in a word, all sensible objects, have an existence, natural or real, distinct from their being perceived by the understanding. But, with how great an assurance and acquiescence soever this principle may be entertained in the world, yet whoever shall find in his heart to call it into question may, if I mistake not, perceive it to involve a manifest contradiction. For, what are the forementioned objects but things we perceive by sense? and what do we perceive besides our own ideas or sensations? and is it not plainly repugnant that any one of these, or any combination of them, should exist unperceived? (Berkeley, 1996, Pt. I, No. 4, p. 25)
       It seems to me that the only objects of the abstract sciences or of demonstration are quantity and number, and that all attempts to extend this more perfect species of knowledge beyond these bounds are mere sophistry and illusion. As the component parts of quantity and number are entirely similar, their relations become intricate and involved; and nothing can be more curious, as well as useful, than to trace, by a variety of mediums, their equality or inequality, through their different appearances.
       But as all other ideas are clearly distinct and different from each other, we can never advance farther, by our utmost scrutiny, than to observe this diversity, and, by an obvious reflection, pronounce one thing not to be another. Or if there be any difficulty in these decisions, it proceeds entirely from the undeterminate meaning of words, which is corrected by juster definitions. That the square of the hypotenuse is equal to the squares of the other two sides cannot be known, let the terms be ever so exactly defined, without a train of reasoning and enquiry. But to convince us of this proposition, that where there is no property, there can be no injustice, it is only necessary to define the terms, and explain injustice to be a violation of property. This proposition is, indeed, nothing but a more imperfect definition. It is the same case with all those pretended syllogistical reasonings, which may be found in every other branch of learning, except the sciences of quantity and number; and these may safely, I think, be pronounced the only proper objects of knowledge and demonstration. (Hume, 1975, Sec. 12, Pt. 3, pp. 163-165)
       Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (the ability to receive impressions), the second is the power to know an object through these representations (spontaneity in the production of concepts).
       Through the first, an object is given to us; through the second, the object is thought in relation to that representation.... Intuition and concepts constitute, therefore, the elements of all our knowledge, so that neither concepts without intuition in some way corresponding to them, nor intuition without concepts, can yield knowledge. Both may be either pure or empirical.... Pure intuitions or pure concepts are possible only a priori; empirical intuitions and empirical concepts only a posteriori. If the receptivity of our mind, its power of receiving representations in so far as it is in any way affected, is to be called "sensibility," then the mind's power of producing representations from itself, the spontaneity of knowledge, should be called "understanding." Our nature is so constituted that our intuitions can never be other than sensible; that is, it contains only the mode in which we are affected by objects. The faculty, on the other hand, which enables us to think the object of sensible intuition is the understanding.... Without sensibility, no object would be given to us; without understanding, no object would be thought. Thoughts without content are empty; intuitions without concepts are blind. It is therefore just as necessary to make our concepts sensible, that is, to add the object to them in intuition, as to make our intuitions intelligible, that is to bring them under concepts. These two powers or capacities cannot exchange their functions. The understanding can intuit nothing, the senses can think nothing. Only through their union can knowledge arise. (Kant, 1933, Sec. 1, Pt. 2, B74-75 [p. 92])
       Metaphysics, as a natural disposition of Reason is real, but it is also, in itself, dialectical and deceptive.... Hence to attempt to draw our principles from it, and in their employment to follow this natural but none the less fallacious illusion can never produce science, but only an empty dialectical art, in which one school may indeed outdo the other, but none can ever attain a justifiable and lasting success. In order that, as a science, it may lay claim not merely to deceptive persuasion, but to insight and conviction, a Critique of Reason must exhibit in a complete system the whole stock of conceptions a priori, arranged according to their different sources-the Sensibility, the understanding, and the Reason; it must present a complete table of these conceptions, together with their analysis and all that can be deduced from them, but more especially the possibility of synthetic knowledge a priori by means of their deduction, the principles of its use, and finally, its boundaries....
       This much is certain: he who has once tried criticism will be sickened for ever of all the dogmatic trash he was compelled to content himself with before, because his Reason, requiring something, could find nothing better for its occupation. Criticism stands to the ordinary school metaphysics exactly in the same relation as chemistry to alchemy, or as astron omy to fortune-telling astrology. I guarantee that no one who has comprehended and thought out the conclusions of criticism, even in these Prolegomena, will ever return to the old sophistical pseudo-science. He will rather look forward with a kind of pleasure to a metaphysics, certainly now within his power, which requires no more preparatory discoveries, and which alone can procure for reason permanent satisfaction. (Kant, 1891, pp. 115-116)
       Knowledge is only real and can only be set forth fully in the form of science, in the form of system. Further, a so-called fundamental proposition or first principle of philosophy, even if it is true, it is yet none the less false, just because and in so far as it is merely a fundamental proposition, merely a first principle. It is for that reason easily refuted. The refutation consists in bringing out its defective character; and it is defective because it is merely the universal, merely a principle, the beginning. If the refutation is complete and thorough, it is derived and developed from the nature of the principle itself, and not accomplished by bringing in from elsewhere other counter-assurances and chance fancies. It would be strictly the development of the principle, and thus the completion of its deficiency, were it not that it misunderstands its own purport by taking account solely of the negative aspect of what it seeks to do, and is not conscious of the positive character of its process and result. The really positive working out of the beginning is at the same time just as much the very reverse: it is a negative attitude towards the principle we start from. Negative, that is to say, in its one-sided form, which consists in being primarily immediate, a mere purpose. It may therefore be regarded as a refutation of what constitutes the basis of the system; but more correctly it should be looked at as a demonstration that the basis or principle of the system is in point of fact merely its beginning. (Hegel, 1910, pp. 21-22)
       Knowledge, action, and evaluation are essentially connected. The primary and pervasive significance of knowledge lies in its guidance of action: knowing is for the sake of doing. And action, obviously, is rooted in evaluation. For a being which did not assign comparative values, deliberate action would be pointless; and for one which did not know, it would be impossible. Conversely, only an active being could have knowledge, and only such a being could assign values to anything beyond his own feelings. A creature which did not enter into the process of reality to alter in some part the future content of it, could apprehend a world only in the sense of intuitive or esthetic contemplation; and such contemplation would not possess the significance of knowledge but only that of enjoying and suffering. (Lewis, 1946, p. 1)
       "Evolutionary epistemology" is a branch of scholarship that applies the evolutionary perspective to an understanding of how knowledge develops. Knowledge always involves getting information. The most primitive way of acquiring it is through the sense of touch: amoebas and other simple organisms know what happens around them only if they can feel it with their "skins." The knowledge such an organism can have is strictly about what is in its immediate vicinity. After a huge jump in evolution, organisms learned to find out what was going on at a distance from them, without having to actually feel the environment. This jump involved the development of sense organs for processing information that was farther away. For a long time, the most important sources of knowledge were the nose, the eyes, and the ears. The next big advance occurred when organisms developed memory. Now information no longer needed to be present at all, and the animal could recall events and outcomes that happened in the past. Each one of these steps in the evolution of knowledge added important survival advantages to the species that was equipped to use it.
       Then, with the appearance in evolution of humans, an entirely new way of acquiring information developed. Up to this point, the processing of information was entirely intrasomatic.... But when speech appeared (and even more powerfully with the invention of writing), information processing became extrasomatic. After that point knowledge did not have to be stored in the genes, or in the memory traces of the brain; it could be passed on from one person to another through words, or it could be written down and stored on a permanent substance like stone, paper, or silicon chips-in any case, outside the fragile and impermanent nervous system. (Csikszentmihalyi, 1993, pp. 56-57)

    Historical dictionary of quotations in cognitive science > Knowledge

  • 7 Lucas, Anthony Francis

    [br]
    b. 9 September 1855 Spalato, Dalmatia, Austria-Hungary (now Split, Croatia)
    d. 2 September 1921 Washington, DC, USA
    [br]
    Austrian (naturalized American) mining engineer who successfully applied rotary drilling to oil extraction.
    [br]
    A former Second Lieutenant of the Austrian navy (hence his later nickname "Captain") and graduate of the Polytechnic Institute of Graz, Lucas decided to stay in Michigan when he visited his relatives in 1879. He changed his original name, Lucie, into the form his uncle had adopted and became a naturalized American citizen at the age of 30. He worked in the lumber industry for some years and then became a consulting mechanical and mining engineer in Washington, DC. He began working for a salt-mining company in Louisiana in 1893 and became interested in the geology of the Mexican Gulf region, with a view to prospecting for petroleum. In the course of this work he came to the conclusion that the hills in this elevated area, being geological structures distinct from the surrounding deposits, were natural reservoirs of petroleum. To prove his unusual theory he subsequently chose Spindle Top, near Beaumont, Texas, where in 1899 he began to bore a first oil-well. A second drill-hole, started in October 1900, was put through clay and quicksand. After many difficulties, a layer of rock containing marine shells was reached. When the "gusher" came out on 10 January 1901, it not only opened up a new era in the oil and gas business, but it also led to the future exploration of the terrestrial crust.
    Lucas's boring was a breakthrough for the rotary drilling system, which was still in its early days although its principles had been established by the English engineer Robert Beart in his patent of 1884. It proved to have advantages over the pile-driving of pipes. A pipe with a simple cutter at the lower end was driven with a constantly revolving motion, grinding down on the bottom of the well, thus gouging and chipping its way downward. To deal with the quicksand he adopted the use of large and heavy casings successively telescoped one into the other. According to Fauvelle's method, water was forced through the pipe by means of a pump, so the well was kept full of circulating liquid during drilling, flushing up the mud. When the salt-rock was reached, a diamond drill was used to test the depth and the character of the deposit.
    When the well blew out and flowed freely he developed a preventer in order to save the oil and, even more importantly at the time, to shut the well and to control the oil flow. This assembly, patented in 1903, consisted of a combined system of pipes, valves and casings diverting the stream into a horizontal direction.
    Lucas's fame spread around the world, but as he had to relinquish the larger part of his interest to the oil company supporting the exploration, his financial reward was poor. One year after his success at Spindle Top he started oil exploration in Mexico, where he stayed until 1905, when he resumed his consulting practice in Washington, DC.
    [br]
    Bibliography
    1899, "Rock-salt in Louisiana", Transactions of the American Institution of Mining Engineers 29:462–74.
    1902, "The great oil-well near Beaumont, Texas", Transactions of the American
    Institution of Mining Engineers 31:362–74.
    Further Reading
    R.S.McBeth, 1918, Pioneering the Gulf Coast, New York (a very detailed description of Lucas's important accomplishments in the development of the oil industry).
    R.T.Hill, 1903, "The Beaumont oil-field, with notes on other oil-fields of the Texas region", Transactions of the American Institution of Mining Engineers 33:363–405;
    Transactions of the American Institution of Mining Engineers 55:421–3 (contain shorter biographical notes).
    WK

    Biographical history of technology > Lucas, Anthony Francis

См. также в других словарях:

  • Molecular Inversion Probe — (MIP)[1] belongs to the class of Capture by Circularization molecular techniques [1] for performing genomic partitioning, a process through which one captures and enriches specific regions of the genome[2]. Probes used in this technique are… …   Wikipedia

  • advantage — ad‧van‧tage [ədˈvɑːntɪdʒ ǁ ədˈvæn ] noun [countable, uncountable] something that helps you to be better or more successful than others: • America s lead in aerospace is one of its most important competitive advantages. • Government subsidies give …   Financial and business terms

  • ProHD — State of the Industry = The U.S. consumer appetite for high definition television (HDTV) programming is undeniable. The Consumer Electronics Association says that more than 50 percent of U.S. households now own a digital television. It is… …   Wikipedia

  • Nickel-cadmium battery — Batteries caption=From top to bottom Gumstick , AA, and AAA NiCd batteries. EtoW = 40–60 Wh/kg EtoS = 50–150 Wh/L PtoW = 150W/kg CtoDE= 70%–90% [ [http://www.batteryuniversity.com/partone 11.htm Charging nickel based batteries ] ] EtoCP= ? US$… …   Wikipedia

  • Medical simulation — is a branch of simulation technology related to education and training in medical fields of various industries. It can involve simulated human patients, educational documents with detailed simulated animations, casualty assessment in homeland… …   Wikipedia

  • Central processing unit — CPU redirects here. For other uses, see CPU (disambiguation). An Intel 80486DX2 CPU from above An Intel 80486DX2 from below …   Wikipedia

  • Kidney stone — Classification and external resources …   Wikipedia

  • Precision bombing — is the desired skill of being able to bomb single buildings in a built up area, without causing any damage to the surrounding buildings, or the ability to place a bomb by air to within extremely accurate limits. Precision bombing was used by both …   Wikipedia

  • Laptop — A desktop replacement laptop with its 18.4 inch screen showing its technical specifications. A laptop, also called a notebook,[1][2] is a personal computer for …   Wikipedia

  • Direct-Shift Gearbox — Transmission types Manual Sequential manual Non synchronous Preselector Automatic Manumatic Semi automatic Electrohydraulic Dual …   Wikipedia

  • Fuel cell — For other uses, see Fuel cell (disambiguation). Demonstration model of a direct methanol fuel cell. The actual fuel cell stack is the layered cube shape in the center of the image A fuel cell is a device that converts the chemical energy from a… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»